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Displacement control crack-growth instability 
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The criterion for crack growth instability in an elastic-softening material that is subjected to 
displacement control loading conditions is examined. A theoretical analysis of the model of a solid 
containing two symmetrically situated deep cracks and with tensile loading of the remaining 
ligament, defines the criterion for crack growth instability. The criterion is expressed in terms of the 
material's softening characteristics and the solid's geometrical parameters. The analysis covers the 
complete spectrum of material behaviour from the case where the softening zone is very small to 
the case where instability does not occur until the softening zone traverses the ligament between 
the crack tips. 

1. I n t r o d u c t i o n  
Many materials, for example, ceramics, concretes, 
cements and fibre-reinforced composites, exhibit a be- 
haviour such that when a pre-cracked solid is pro- 
gressively loaded, the material fractures at the crack 
tip and the crack extends; behind the propagating 
crack tip there is a softening zone of partially fractured 
material which exerts a restraining stress between the 
crack faces. This restraining stress is related, via the 
material softening law, to the relative displacement of 
the crack faces, and acts until the opening at the 
trailing edge of the softening zone, i.e. the original 
crack tip, attains a critical value when the restraining 
stress falls to zero; the softening zone is then said to be 
fully developed. Thereafter, the crack continues to 
extend with a constant opening at the trailing edge of 
the softening zonel During the last few years, particu- 
lar attention has been paid to the relation between the 
crack tip stress intensity, K, as measured at the leading 
edge of the softening zone, and the crack extension 
[1-6].  This relation depends on a variety of factors: 
the geometrical configuration, loading pattern, the 
softening law and the magnitude of Kjc, the fracture 
toughness of the matrix material, i.e. the crack tip 
stress intensity needed to fracture the material at the 
crack tip. 

The global response of a cracked solid is another 
important aspect of the behaviour of an elastic-soften- 
ing material, and Carpinteri 1-73 has recently focused 
attention on this aspect. He considered the situation 
where K~c = 0, i.e., the fracture toughness of the 
matrix material was presumed to be negligible, and 
examined the behaviour of a material whose fully 
developed softening zone size is very large; he investig- 
ated the model of an edge-cracked solid that is 

subjected to bending deformation. By analysing a 
range of situations where the solid width, length and 
crack depth were scaled up proportionally, Carpinteri 
showed that a displacement control crack growth in- 
stability of the cusp catastrophe type, i.e. both load 
and displacement decrease during crack extension, 
was favoured by large dimensions, and also by a small 
crack depth solid width ratio. He referred to experi- 
mental results [7] which support the theoretical pre- 
dictions. In Part I [8] Carpinteri's study of the bend 
configuration was extended to the case where the 
softening zone is very small in comparison with other 
characteristic dimensions of the configuration, i.e. at 
the opposite end of the spectrum of material behavi- 
our to that considered by Carpinteri I-7]. By perform- 
ing a linear elastic analysis, and assuming that the 
crack extension condition can be viewed in terms of 
the stress intensity factor, K, being equal to Kc, 
a measure of the fracture resistance due to the re- 
straining effects of the softening material, he showed 
that the criterion for a cusp-type displacement control 
crack growth instability can be expressed in the form 
(a/W) < g(L/W) where a = crack depth, W = beam 
width, L = beam length and g(L/W) is an increasing 
function of L/W. The criterion is therefore indepen- 
dent of material properties (i.e. Kc) but depends only 
on geometrical parameters through the ratios a/W 
and L/W though not on the magnitudes of the dimen- 
sions themselves; this is in contrast to Carpinteri's 
results 1-7] for a material with a large softening zone, 
which showed that a cusp in the load-displacement 
record was favoured by large dimensions. 

This paper analyses the model of a solid containing 
two symmetrically situated deep cracks and with ten- 
sile loading of the remaining ligament. With such 
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a model, the behaviour of materials having large and 
small softening zones can be considered within the 
framework of the same analytical procedure. The ana- 
lysis defines the condition, expressed in terms of the 
material's softening zone characteristics and the 
solid's geometrical parameters, for a displacement 
control crack growth instability of the cusp catas- 
trophe type. The results are, in general, consistent with 
those obtained [7, 8] for the bend configuration. The 
importance of a cusp-type instability stems from the 
fact that many engineering structures are subjected to 
displacement control loading, and if there is a cusp- 
type instability, and though there may be stability on 
the lower portion of the load-displacement record, 
according to a static analysis, the energy associated 
with a sudden load reduction may well lead to cata- 
strophic dynamic failure of the structure. 

2.  T h e o r e t i c a l  a n a l y s i s  
The model (Fig. 1) of a solid of width 2h, height D and 
thickness B in the direction of the figure normal is 
analysed. The solid contains two symmetrically situ- 
ated deep cracks, and is subjected to an applied rela- 
tive displacement, A, at points along the axis which 
bisects the ligament, this displacement being asso- 
ciated with a load P. The loading causes the cracks, 
whose tips are at a distance 2Lo apart in the unloaded 
state, to propagate so that the tips are a distance 2L,  
apart. There are softening zones of length (Lo - L , )  at 
each crack tip, and it is assumed in the first instance 
that the softening zones are not fully developed. In 
order to allow for a simple analysis, it is assumed that 
the restraining stress within a softening zone retains 
a constant value Pc, this stress being operative until 
the opening at the trailing edge of a'softening zone 
attains a critical value 8~. Furthermore, it is assumed 
that the fracture toughness of the matrix material is 
zero; i.e. there is finiteness of stress at the crack tips. 
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Figure 1 The model analysed in Section 2; the figure shows partially 
developed softening zones at the crack tips which are initially 
a distance 2Lo apart. 

With these simplifications, we can use the results 
relevant to the Dugdale-Bilby-Cottrell-Swinden 
(DBCS) [9, 10] representation of plastic deformation 
at a crack tip. 

As indicated above, the initial concern is with re- 
gard to the formation of partially developed softening 
zones at the tips of cracks that are a distance 2Lo apart 
prior to the load application. For this plane strain 
situation, results from a previous analysis [11] for 
plastically relaxed cracks give the opening 6T~p at the 
initial crack tip positions, i.e. at the trailing edges of 
the partially developed softening zones, as 

4pcLo 
~TIP --  - - [ ( 1  -~- ko)ln(1 + ko) 

~Eo 

+ (1 - k o ) l n ( 1  - k o ) ]  (1)  

where Eo = E/(1- v2), E is Young's modulus and 
v = Poisson's ratio, and )Vo is given by the relation 

P 
)~o - (2) 2BLo Pc 

Furthermore, the relative displacement, A, of the load- 
ing points is given by the expression 

I~-- ~ 41n ( 2h ~-] P A = + -  
\ o/J 

4poLo 
+ ~ff0-o [2~,0 - (1 + )vo)ln(1 + Xo) 

+ (1 - Xo)ln(1 - ~ o ) 3  (3) 

the first term on the right-hand side being the dis- 
placement when there are no softening zones, and the 
second term being the displacement due to the soften- 
ing zones. Equations 1-3 show that as the applied 
displacement, A, increases, then so does the load P, the 
parameter Xo and the displacement ~T~P at the initial 
crack tips. If 8o is the critical value of the crack open- 
ing, 6y~p, associated with a fully developed softening 
zone, i.e. the displacement at which the restraining 
stress falls to zero, Equation 1 shows that the softening 
zones become fully developed before the zones tra- 
verse the ligament between the initial crack tips, i.e. 
prior to "general softening", if nEoSr < 1. If 
this condition is satisfied, then following the full devel- 
opment of the softening zones, the cracks continue to 
grow with a constant opening 6c at the trailing edges 
of the zones. When the trailing edges of these zones are 
a distance 2L apart, Equations 1-3 are replaced by 

4pcL 
6c = - - [ ( 1  + X)ln(1 + L) 

rtEo 

+ (1 - Z ) l n ( 1  - Z ) ]  (4)  

A = 

P 
- (5) 2BLpc 

+ In ~ BEo 

4pc L 
+ ~ET-0 [2k - (1 + )~)ln(1 + )~) 

+ (1 - ;k.) ln(1 - ~.) ]  (6)  
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with ~, < 1 if general softening has still not occurred. 
Now Equations 4 and 5, upon differentiation, give, 
respectively 

0 = 6L[(1 + )~)ln(1 + )~) + (1 - )Oln(1 - )0] 

+ LN~[ln(1 + ;~) - ln(1 - X)] (7) 

and 

~P 
- ~,~L + L ~ .  (8) 

2Bpr 

whereupon 

6P 
- fO~)  2Bpc~L 

Vln(1 + %) + ln(1 - ~) ]  

"--kln(1 + )~)- in(1 ] (9) 

Becausef(~,) is always positive, increasing from zero to 
unity as ~ increases from zero to unity when general 
softening occurs, Equation 9 shows that the load P de- 
creases during crack extension. Furthermore Equa- 
tions 5 and 6 show that 

4pr ~ + 21n 

y l + L6L ~ + 21n ~ - 2  

+ 6L[2~ - (1 + %)ln(1 - ~) 

+ (1 - )qln(1 - )0] 

+ L g ~ . [ -  ln(1 + )0 - In(1 - )0] 

(10) 

and it then follows from Equations 7 and 10 that 
A decreases as L decreases if 

y ~ -  + 21n ~ > g(L) 

- 4 1 n ( 1  - )~)ln(1 + )~) 

- [ l n ( 1  - )0 + In(1 + L)] 

(11) 

Because P decreases during crack extension, following 
the full development of softening zones, Equation 11 is 
the condition for there to be a cusp-type displacement 
control crack growth instability when the trailing 
edges of the fully developed softening zones are a dis- 
tance 2L apart. 

As a special case, the condition for there to be 
a cusp-type instability simultaneous with the full de- 
velopment of softening zones at crack tips, which are 
initially at a distance 2Lo apart, is 

+ 21n > g(~,o) 

- 41n(1 - ~ .o ) ln(1  + ~,o) 
= (12) 

- [ l n ( 1  - ~,o) + ln (1  + ~-o)] 

with ~,o = P/2BLopc. This equation, together with 
Equation 4 for k = ~,o, enables us to define the bound- 
ary curve separating the regions for which a cusp-type 
displacement control crack growth instability does 
and does not occur as soon as a softening zone is fully 

developed, remembering that we are dealing with the 
situation where general softening has not occurred, i.e. 
nEo6r < 1. Thus with 

nEo~c 
x - (13) 

8pcLoln2 

and 

Y - 4h + 21n (14) 

and Equation 4 with 2 replaced by 2o, the appropriate 
x and y values for the boundary curve can be ob- 
tained, and these are given in Table I. The boundary 
curve AB is shown in Fig. 2, together with the vertical 
line x = 1; when x > 1, general softening occurs prior 
to the full development of softening zones. As a check, 
we can perform a very small softening zone analysis, 
by assuming linear elastic behaviour and that the 
crack tip stress intensity retains a constant value K ,  
during crack extension. The displacement, A, is then 
given by the expression 

I o A = ~ + 4_ In (15) 
n ~ BEo 

with P and K ,  being related by the expression 

P 
K ,  - (nL)l/2 (16) 

With K ,  constant, Equations 15 and 16 show that 
P and A both decrease during crack extension, i.e. 
there is a cusp instability at the onset of crack exten- 
sion, if 

4h  + In > 4 (17) 

This result is consistent with the AB curve in Fig. 2, at 
the position where x = 0, y = 4, noting that x ~ 0  
implies a vanishingly small softening zone. 

The region below the curve AB in Fig. 2 can be 
partitioned into two regions: (a) a region (II) in which 

T A B L E  I The x, y values defining the Boundary curve which 
separates the regions for which a cusp-type displacement control 
crack growth instability does and does not occur as soon as a sof- 
tening zone is fully developed; general softening is assumed not to 
have occurred 

~o x y 

0 0 4.000 
0.1 0.007 3.996 
0.2 0.029 3.984 
0.3 0.066 3.972 
0.4 0.119 3.945 
0.5 0.188 3.910 
0.6 0.278 3.857 
0.7 0.390 3.795 
0.8 0.531 3.704 
0.9 0.714 3.559 
1.0 1.000 2.773 

nEoSc 
Note :  x 8pcLoln2'  Y = 

41n 2 
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6, with 7. = 1) by the relation 

6A = ~ ( 2  - 21n2) (19) 
I L L  0 

Consequently with P = 2BLp:, and accounting for the 
elastic contribution (see the first term in Equation 6), it 
follows that 

r c E o ~ A r c D  ( 2 h )  
7 ~ - ~ -  + 21n ~-~ - 21n2 (20) 

Thus there will eventually be a (gradual) displacement 
control instability, and this will occur when the liga- 
ment size, L, satisfies the condition (2h) 

4h- + 21n ~ = 21n2 (21) 

7I 

If, however 

Figure 2 The partitioning of the x-y space into regions with various 
behaviour patterns; this figure should be Viewed in conjunction 
with Fig. 3. x = (nEo6o)/(gpcLoln 2), y = [(nO/4h) + 21n(2h/r~Lo)]. 
I, Zone fully developed prior to general softening; immediate cusp 
instability. II, Zone fully developed, with crack extension leading to 
a cusp instability prior to general softening. III, Zone fully de- 
veloped, with crack extension leading to general softening and 
a cusp instability. IV, Zone fully developed, with crack extension 
leading to general softening and a gradual displacement control 
instability. V, General softening prior to full development of a sof- 
tening zone, which is associated with a cusp instability. VI, General 
softening prior to full development of a softening zone, with crack 
extension leading to a gradual displacement control instability. 

4h- + 21n > 21n 2 (22) 

there is a cusp-type instability immediately a zone is 
fully developed, without there being any crack exten- 
sion prior to instability. The boundary (horizontal) 
line above which the x, y values are such that there is 
a cusp-type instability as soon as a softening zone is 
fully developed, is shown in Fig. 2. The existence of 
this line implies that the region below the curve BC 
can be partitioned into two sub-regions: (a) a sub- 

FD~ CE 

(o) A 

FI)~CE 

(b} A 

a softening zone is fully developed prior to general 
softening, but then crack extension proceeds under 
a decreasing load, P, until there is a cusp-type dis- 
placement control instability prior to general soften- 
ing, and (b) a region ( I I I+  IV) in which a softening 
zone is fully developed prior to general softening, but 
where crack extension proceeds under a decreasing 
load until general softening occurs. The boundary 
curve BC separating these two regions (II and III) is 
readily shown to be given in terms of x and y values 
(see Equations 13 and 14) by the relation 

y = 21n4x (18) 

If general softening occurs prior to the full develop- 
ment of a softening zone, the load P remains constant 
at the value 2BLoPc (see Equation 5 with 7, = 1), until 
the zone is fully developed. Thereafter the ligament 
size decreases from its initial value 2Lo and the load 
decreases; during this stage the non-elastic compon- 
ent, Ap, of A is given (see the second term in Equation 

c~ FD~CE 

(c) A 
g. 

{d) A 

Q- GS FD~ CE 

(el A 

GS F'D~ CE 

(f) A 

Figure 3 Schematic load (P) - displacement (A) records for the 
various regions in Fig. 2. (a) I, (b) II, (c) III, (d) IV, (e) V and (f) VI. 
FD, full development of softening zone; CE, crack extension, GS 
general softening, i.e. softening zone completely traverses the liga- 
ment. Crack extension occurs when there is a complete loss of 
cohesion at the original crack tip. 
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region (III) where there is crack extension leading to 
general softening and an immediate cusp-type insta- 
bility, and (b) a sub-region (IV) where there is crack 
extension leading to general softening followed by 
a graduaFinstability. It is readily shown that the curve 
DE separating these two sub-regions has the equation 

y = 21n2x (23) 

The load-displacement behaviour patterns within 
the various regions in Fig. 2 are shown schematically 
in Fig. 3. It should be noted that the displacement A, 
after complete failure (P = 0) of the ligament region, is 
6~ the position of this point relative to the various 
P-A curves shown in Fig. 3 depends in large part on 
the ratio D/h. 

3. Discussion 
A theoretical analysis of the model of an elastic-soften- 
ing solid containing two symmetrically situated deep 
cracks and with tensile loading of the remaining liga- 
ment has been presented. To facilitate the analysis it 
has been assumed that the restraining stress within the 
softening zone retains a constant value Pc, this stress 
being effective until the opening at the trailing edge of 
the softening zone attains a critical value 8~, when the 
zone is said to be fully developed. Although the details 
of the conclusions will be different for a more realistic 
softening behaviour, e.g. a linear softening law, never- 
theless, it is anticipated that the broad general picture 
will remain the same. The analysis has focused on the 
condition for there to be a displacement control crack 
growth instability, and more particularly, a cusp ca- 
tastrophe instability. Focusing attention on the situ- 
ation where such an instability occurs prior to general 
softening, i.e. where softening material completely 
traverses the ligament, the analysis has defined the 
instability criterion in terms of the material's softening 
characteristics, i.e. the parameters Pc and ~ ,  and the 
solid's geometrical parameters, i.e. D, h and L0. For 
there to be a cusp catastrophe type of instability prior 
to general softening, reference to Figs 2 and 3 shows 
that we should be operating within Regions I and II of 
the x-y space (Fig. 2). In other words, the following 
two conditions must be satisfied 

~Eo5~ 
X -- 

8p~Loln2. 

< 1 (24) 

y = + 21n 

> 21n 4x 

[ - 21n 4\SpcLoln2] j (25) 

These relations show that the material and geometri- 
cal parameters are coupled in defining the criterion for 
a cusp-type instability. If the configuration's geometri- 
cal parameters are scaled proportionally, Equations 
24 and 25 show that instability is favoured by an 
increase in the solid's dimensions. Furthermore, with 
prescribed values of D, h and the material parameters, 
instability is favoured by an increase in Lo, i.e. by 
a smaller crack depth. These conclusions are consist- 
ent with those obtained by Carpinteri [7] for the 
three-point bend specimen geometry. He analysed the 
behaviour of one specific material (having a large fully 
developed softening zone size), but the present ana- 
lysis leading to Equations 24 and 25 is general in the 
sense that it embraces the complete spectrum of ma- 
terial behaviour patterns. In this context, these rela- 
tions show that a cusp-type instability is favoured by 
a small value of the ratio Eoac/Lopc, i.e. by a small 
fully developed softening zone size (the fully developed 
zone size for the reference model of a semi-infinite 
crack in a remotely loaded infinite solid is 

0.40Eo~c/pc [8]). This conclusion is consistent 
with the result in Part I [8] for the bend specimen 
geometry for the case where the softening zone size is 
small, when they are compared with Carpinteri's re- 
sults; the analysis in Part I was based on linear elastic 
behaviour of the solid, and the assumption that the 
crack tip stress intensity retains a constant value K ,  
during crack extension. 
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